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a b s t r a c t

The canonical difference-in-differences (DD) estimator contains two time periods, "pre"
and "post", and two groups, "treatment" and "control". Most DD applications, however,
exploit variation across groups of units that receive treatment at different times. This
paper shows that the two-way fixed effects estimator equals a weighted average of all
possible two-group/two-period DD estimators in the data. A causal interpretation of two-
way fixed effects DD estimates requires both a parallel trends assumption and treatment
effects that are constant over time. I show how to decompose the difference between
two specifications, and provide a new analysis of models that include time-varying
controls.

Published by Elsevier B.V.

1. Introduction

Difference-in-differences (DD) is both the most common and the oldest quasi-experimental research design, dating
ack to Snow’s (1855) analysis of a London cholera outbreak.1 A DD estimate is the difference between the change

in outcomes before and after a treatment (difference one) in a treatment versus control group (difference two):(
yPOSTTREAT − yPRETREAT

)
−
(
yPOSTCONTROL − yPRECONTROL

)
. That simple quantity also equals the estimated coefficient on the interaction of a

treatment group dummy and a post-treatment period dummy in the following regression:

yit = γ + γi·TREATi + γ·tPOSTt + β2x2TREATi × POSTt + uit . (1)

The elegance of DD makes it clear which comparisons generate the estimate, what leads to bias, and how to test the
design. The expression in terms of sample means connects the regression to potential outcomes and shows that, under
a common trends assumption, a two-group/two-period (2x2) DD identifies the average treatment effect on the treated.
Almost all econometrics textbooks and survey articles describe this structure,2 and recent methodological extensions build
on it.3

✩ This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.
∗ Corresponding author at: Opportunity and Inclusive Growth Institute, Federal Reserve Bank of Minneapolis, 90 Hennepin

Ave, Minneapolis, MN 55401, USA.
E-mail address: andrew.j.goodman-bacon@vanderbilt.edu.

1 A search from 2012 forward of nber.org, for example, yields 430 results for ‘‘difference-in-differences’’, 360 for ‘‘randomization’’ AND
‘experiment’’ AND ‘‘trial’’, and 277 for ‘‘regression discontinuity’’ OR ‘‘regression kink’’.
2 This includes Angrist and Krueger (1999), Angrist and Pischke (2009), Heckman et al. (1999), Meyer (1995), Cameron and Trivedi (2005) and
ooldridge (2010). Cunningham (2021) is an exception.
3 Inverse propensity score reweighting: Abadie (2005), double robust estimation: Sant’Anna and Zhao (2020), synthetic control: Abadie et al.

2010), changes-in-changes: Athey and Imbens (2006), quantile treatment effects: Callaway et al. (2018).
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304-4076/Published by Elsevier B.V.
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Most DD applications diverge from this 2x2 set up though because treatments usually occur at different times.4 Local
overnments change policy. Jurisdictions hand down legal rulings. Natural disasters strike across seasons. Firms lay off
orkers. In this case researchers estimate a regression with dummies for cross-sectional units (αi·) and time periods (α·t ),
nd a treatment dummy (Dit ):

yit = αi· + α·t + βDDDit + eit . (2)

n contrast to our substantial understanding of canonical 2x2 DD, we know relatively little about the two-way fixed
ffects DD when treatment timing varies. We do not know precisely how it compares mean outcomes across groups.5
e typically rely on general descriptions of the identifying assumption like ‘‘interventions must be as good as random,

onditional on time and group fixed effects’’ (Bertrand et al., 2004, p. 250). We have limited understanding of the treatment
ffect parameter that regression DD identifies. Finally, we often cannot evaluate how and why alternative specifications
hange estimates.6
This paper shows that the two-way fixed effects DD estimator in (2) (TWFEDD) is a weighted average of all possible 2x2

D estimators that compare timing groups to each other (the DD decomposition). Some use units treated at a particular
ime as the treatment group and untreated units as the control group. Some compare units treated at two different times,
sing the later-treated group as a control before its treatment begins and then the earlier-treated group as a control after
ts treatment begins. The weights on the 2x2 DDs are proportional to timing group sizes and the variance of the treatment
ummy in each pair, which is highest for units treated in the middle of the panel.
I first use this DD decomposition to show that TWFEDD estimates a variance-weighted average of treatment effect

arameters sometimes with ‘‘negative weights’’ (Borusyak and Jaravel, 2017; de Chaisemartin and D’Haultfœuille, 2020;
un and Abraham, 2020).7 When treatment effects do not change over time, TWFEDD yields a variance-weighted average
f cross-group treatment effects and all weights are positive. Negative weights only arise when average treatment effects
ary over time. The DD decomposition shows why: when already-treated units act as controls, changes in their outcomes
re subtracted and these changes may include time-varying treatment effects. This does not imply a failure of the design
n the sense of non-parallel trends in counterfactual outcomes, but it does suggest caution when using TWFE estimators
o summarize treatment effects.

Next I use the DD decomposition to define ‘‘common trends’’ when one is interested in using TWFEDD to identify
he variance-weighted treatment effect parameter. Each 2x2 DD relies on pairwise common trends in untreated potential
utcomes so the overall assumption is an average of these terms using the variance-based decomposition weights. The
xtent to which a given timing group’s differential trend biases the overall estimate equals the difference between the
otal weight on 2x2 DDs where it is the treatment group and the total weight on 2x2 DDs where it is the control group.
ecause units treated near the beginning or the end of the panel have the lowest treatment variance they can get more
eight as controls than treatments. In designs without untreated units they always do.
Finally, I develop simple tools to describe the TWFEDD estimator and evaluate why estimates change across specifi-

ations.8 Plotting the 2x2 DDs against their weights displays heterogeneity in the components of the weighted average
nd shows which terms and timing groups matter most. Summing the weights on the timing comparisons quantifies
‘how much’’ of the variation comes from timing (a common question in practice), and provides practical guidance on
ow well the TWFEDD estimator works compared to alternative estimators (Sun and Abraham, 2020; Borusyak and
aravel, 2017; Callaway and Sant’Anna, 2020; Imai and Kim, 2021; Strezhnev, 2018; Ben-Michael et al., 2019). Comparing
WFEDD estimates across specifications in a Oaxaca-Blinder-Kitagawa decomposition measures how much of the change
n the overall estimate comes from the 2x2 DDs (consistent with confounding or within-group heterogeneity), the weights
changing estimand), or the interaction of the two. Scattering the 2x2 DDs or the weights from different specifications
how which specific terms drive these differences. I also provide the first detailed analysis of specifications with time-
arying controls, which can address bias, but also changes the sources of identification to include comparisons between
nits with the same treatment but different covariates.
To demonstrate these methods I replicate Stevenson and Wolfers (2006), who study of the effect of unilateral divorce

aws on female suicide rates. The TWFEDD estimates suggest that unilateral divorce leads to 3 fewer suicides per million

4 Half of the 93 DD papers published in 2014/2015 in 5 general interest or field journals had variation in timing.
5 Imai and Kim (2021) note ‘‘It is well known that the standard DiD estimator is numerically equivalent to the linear two-way fixed effects

regression estimator if there are two time periods and the treatment is administered to some units only in the second time period. Unfortunately,
this equivalence result does not generalize to the multi-period DiD design. . .Nevertheless, researchers often motivate the use of the two-way fixed
effects estimator by referring to the DiD design (e.g., Angrist and Pischke, 2009)’’.
6 This often leads to sharp disagreements. See Neumark et al. (2014) on unit-specific linear trends, Lee and Solon (2011) on weighting and

outcome transformations, and Shore-Sheppard (2009) on age-time fixed effects.
7 Early research in this area made specific observations about stylized specifications with no unit fixed effects (Bitler et al., 2003), or it provided

simulation evidence (Meer and West, 2016). Recent research on the weighting of heterogeneous treatment effects does not provide this intuition.
de Chaisemartin and D’Haultfœuille (2020, p. 2969) and Borusyak and Jaravel (2017, pp. 10–11), describe these same weights as coming from an
auxiliary regression, noting that ‘‘a general characterization of [the weights] does not seem feasible’’. Athey and Imbens (2018) also decompose the
DD estimator and develop design-based inference methods for this setting. Strezhnev (2018) expresses β̂DD as an unweighted average of DD-type
erms across pairs of observations and periods.
8 These methods can be implemented using the Stata command bacondecomp available on SSC (Goodman-Bacon et al., 2019).
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omen. More than a third of the identifying variation comes from treatment timing and the rest comes from comparisons
o states whose reform status does not change during the sample period. Event-study estimates show that the treatment
ffects grow over time, though, which biases many of the timing comparisons. The TWFEDD estimate (−3.08) is therefore
misleading summary of the average post-treatment effect (about −5). Much of the sensitivity across specifications comes
rom changes in weights, or a small number of 2x2 DD’s, and need not indicate bias.

My results show how and why the TWFEDD estimator can fail to identify interpretable treatment effect parameters and
uggest that practitioners should be careful when relying on it in designs with treatment timing variation. Fortunately,
ecent research has developed simple flexible estimators that address the problems I describe (e.g. Callaway and
ant’Anna, 2020), enabling applied researchers to make better use of variation in treatment timing.

. The difference-in-differences decomposition theorem

When units experience treatment at different times, one cannot estimate equation (1) because the post-period dummy
s not defined for control observations. Nearly all work that exploits variation in treatment timing use the two-way fixed
ffects regression in Eq. (2) (Cameron and Trivedi, 2005 p. 738). Researchers clearly recognize that differences in when
nits received treatment contribute to identification, but have not been able to describe how these comparisons are made.9
his section decomposes the TWFEDD estimator into a weighted average of simple 2x2 DD estimators.
Fig. 1 plots a simple data structure that includes treatment timing. Assume a balanced panel dataset with T periods (t)

nd N cross-sectional units (i) that belong to an early treatment group, k, which receives a binary treatment at ti = k; a
ate treatment group, ℓ, which receives the binary treatment at ti = ℓ > k, or an untreated group, U , ‘‘treated’’ at ti = ∞.

Throughout the paper I use ‘‘treatment group’’ or ‘‘timing group’’ to refer to collections of units either treated at the
ame time or not treated. I refer to units that do not receive treatment as ‘‘untreated’’ rather than ‘‘controls’’ because,
hile they obviously act as controls, treated units do, too. k will denote an earlier treated group and ℓ will denote a

ater treated group. Each timing group’s sample share is nk ≡
∑

i 1 {ti = k} /N and the share of time it spends treated is
Dk ≡

∑
t 1 {t ≥ k} /T . I denote the sample mean of yit for units treated at time t∗b during the post period for treatment

day t∗a by: yPOST (a)b ≡
1

T−(a−1)

∑T
a

[∑
i yit1{ti=b}∑
i 1{ti=b}

]
. (yPRE(a)b is defined similarly.)

By the Frisch–Waugh–Lovell theorem (Frisch and Waugh, 1933; Lovell, 1963), β̂DD equals the univariate regression
coefficient between yit and the treatment dummy with unit and time means removed:

Ĉ(yit , D̃it )

V̂D
=

1
NT

∑
i
∑

t yit D̃it

1
NT

∑
i
∑

t D̃
2
it

. (3)

I denote grand means by x =
1
NT

∑
i
∑

t xit , and fixed-effects adjusted variables by x̃it = (xit − xi) − (xt − x).
One challenge in this setting has been to articulate how estimates of Eq. (2) compare the timing groups and times

depicted in Fig. 1. We do, however, have clear intuition, for 2x2 estimators in which one group’s treatment status changes
and another’s does not. (These are just 2x2 DD estimators, so without additional assumptions discussed in Section 2 they
cannot be interpreted as causal estimands.) In the three-group case we could form four such designs estimable by Eq. (1)
on subsamples of timing groups and time periods. Fig. 2 plots them.

Panels A and B show that if we consider only one of the two treatment groups, the TWFE estimator reduces to the
canonical case comparing a treated to an untreated group:

β̂2x2
jU ≡

(
yPOST (j)
j − yPRE(j)

j

)
−

(
yPOST (j)
U − yPRE(j)

U

)
, j = k, ℓ. (4)

ote that I use 2x2 to refer to two time windows (here PRE (j) and POST (j)) instead of only two time periods. If instead
here were no untreated units, the two way fixed effects estimator would be identified only by the differential treatment
iming between groups k and ℓ. For this case, panels C and D plot two clear 2x2 DDs based on sub-periods when only
ne timing group’s treatment status changes. Before ℓ, the early units act as the treatment group because their treatment
tatus changes, and later units act as controls during their pre-period. We compare outcomes between the window when
reatment status varies, MID(k, ℓ), and timing group k’s pre-period, PRE (k):

β̂
2x2,k
kℓ ≡

(
yMID(k,ℓ)
k − yPRE(k)

k

)
−

(
yMID(k,ℓ)
ℓ − yPRE(k)

ℓ

)
. (5)

The opposite situation, shown in panel D, arises after k when the later group changes treatment status but the early group
does not. Later units act as the treatment group, early units act as controls, and we compare average outcomes between
the periods POST (ℓ) and MID (k, ℓ):

β̂
2x2,ℓ
kℓ ≡

(
yPOST (ℓ)
ℓ − yMID(k,ℓ)

ℓ

)
−

(
yPOST (ℓ)

k − yMID(k,ℓ)
k

)
. (6)

9 Angrist and Pischke (2015), for example, lay out the canonical DD estimator in terms of means, but discuss regression DD with timing in general
terms only, noting that there is ‘‘more than one. . . experiment’’ in this setting.
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Fig. 1. Difference-in-Differences with variation in treatment Timing: Three groups. Notes: The figure plots outcomes in three timing groups: an
untreated group, U; an early treatment group, k, which receives a binary treatment at k =

34
100 T ; and a late treatment group, ℓ, which receives the

inary treatment at ℓ =
85
100 T . The x-axis notes the three sub-periods: the pre-period for timing group k, [1, k − 1], denoted by PRE(k); the middle

eriod when timing group k is treated and timing group ℓ is not, [k, ℓ − 1], denoted by MID(k, ℓ); and the post-period for timing group ℓ, [ℓ, T ],
enoted by POST (ℓ). The treatment effect is 10 in timing group k and 15 in timing group ℓ.

he already-treated units in timing group k can serve as controls even though they are treated because treatment status
oes not change.
These simple DDs come from subsamples that relate to the full sample in two specific ways. First, each one uses a

raction of all NT observations. The treated/untreated DDs in (4) use two groups and all time periods, so their sample
hares are nk + nU and nℓ + nU . The timing DDs in (5) and (6) also use two groups but only some time periods. β̂

2x2,k
kℓ

omes from timing group ℓ’s pre-period so its share of all NT observations is (nk + nℓ)
(
1 − Dℓ

)
. β̂2x2,ℓ

kℓ comes from timing
group k’s post-period so its share of all NT observations is (nk + nℓ)Dk.

Second, each 2x2 DD is identified by how treatment varies in its subsample. The ‘‘amount’’ of identifying variation
equals the variance of fixed-effects-adjusted Dit from its subsample:

V̂D
jU ≡ njU

(
1 − njU

)
Dj
(
1 − Dj

)
, j = k, ℓ (7)

V̂D,k
kℓ ≡ nkℓ (1 − nkℓ)

Dk − Dℓ

1 − Dℓ

1 − Dk

1 − Dℓ

, (8)

V̂D,ℓ
kℓ ≡ nkℓ (1 − nkℓ)

Dℓ

Dk

Dk − Dℓ

Dk
, (9)

where nab ≡
na

na+nb
is the relative size of timing groups in each pair. The first part of each pairwise variance measures

ow concentrated the timing groups are in the subsample. If njU equals zero or one, the variance goes to zero: there is
ither no treatment or no control group. The second part comes from when the treatment occurs in each subsample. The

D terms equal the variance of Dit in each subsample’s treatment group in its time window (thus the rescaling in (8) and
(9)). If Dj equals zero or one the variance goes to zero: treatment does not vary over time.

My central result is that the TWFEDD estimator is an average of well-understood 2x2 DD estimators, like those plotted
in Fig. 2, with weights based on subsample shares and the variances in (7)–(9):

Theorem 1 (Difference-in-Differences Decomposition Theorem). Assume that the data contain k = 1, . . . , K timing groups of
nits ordered by the time when they receive a binary treatment, k ∈ (1, T ]. There may be one timing group, U, that includes
nits that never receive treatment. The OLS estimate, β̂DD, in a two-way fixed-effects regression (2) is a weighted average of
257
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Fig. 2. The four simple (2x2) difference-in-differences estimates in the three group case. Notes: The figure plots outcomes for the subsamples that
generate the four simple 2x2 difference-in-difference estimates in the three timing group case from Fig. 1. Each panel plots the data structure for
one 2x2 DD. Panel A compares early treated units to untreated units (β̂DD

kU ); panel B compares late treated units to untreated units (β̂DD
ℓU ); panel C

compares early treated units to late treated units during the late timing group’s pre-period (β̂DD,k
kℓ ); panel D compares late treated units to early

treated units during the early timing group’s post-period (β̂DD,ℓ
kℓ ). The treatment times mean that Dk = 0.67 and Dℓ = 0.16, so with equal group

izes, the decomposition weights on the 2x2 estimate from each panel are 0.365 for panel A, 0.222 for panel B, 0.278 for panel C, and 0.135 for
anel D.

ll possible two-by-two DD estimators.

β̂DD
=

∑
k̸=U

skU β̂2x2
kU +

∑
k̸=U

∑
ℓ>k

[
skkℓ β̂

2x2,k
kℓ + sℓkℓ β̂

2x2,ℓ
kℓ

]
. (10a)

here the 2x2 DD estimators are:

β̂2x2
kU ≡

(
yPOST (k)
k − yPRE(k)

k

)
−

(
yPOST (k)
U − yPRE(k)

U

)
, (10b)

β̂
2x2,k
kℓ ≡

(
yMID(k,ℓ)
k − yPRE(k)

k

)
−

(
yMID(k,ℓ)
ℓ − yPRE(k)

ℓ

)
, (10c)

β̂
2x2,ℓ
kℓ ≡

(
yPOST (ℓ)
ℓ − yMID(k,ℓ)

ℓ

)
−

(
yPOST (ℓ)

k − yMID(k,ℓ)
k

)
. (10d)

The weights are:

skU =
(nk + nU )2

V̂D
kU  

nkU (1 − nkU )Dk(1 − Dk)

V̂D
, (10e)

skkℓ =

(
(nk + nℓ)

(
1 − Dℓ

))2
V̂D,k
kℓ  

nkℓ (1 − nkℓ)
Dk − Dℓ

1 − Dℓ

1 − Dk

1 − Dℓ , (10f)

V̂D

258



A. Goodman-Bacon Journal of Econometrics 225 (2021) 254–277

a

W

D
g

t
i
t
t

m

S
e
c
m

sℓkℓ =

(
(nk + nℓ)Dk

)2
V̂D,ℓ
kℓ  

nkℓ (1 − nkℓ)
Dℓ

Dk

Dk − Dℓ

Dk

V̂D
. (10g)

nd
∑

k̸=U skU +
∑

k̸=U
∑

ℓ>k

[
skkℓ + sℓkℓ

]
= 1.

Proof. See Appendix A.10

Theorem 1 completely describes the sources of identifying variation in a TWFEDD estimator and their importance.
ith K timing groups, one could form K 2

− K ‘‘timing-only’’ estimates that either compare an earlier- to a later-treated
timing group (β̂2x2,k

kℓ ) or a later- to earlier-treated timing group (β̂2x2,ℓ
kℓ ). With an untreated group, one could form K 2x2

Ds that compare one timing group to the untreated group (β̂2x2
kU ). Therefore, with K timing groups and one untreated

roup, the DD estimator comes from K 2 distinct 2x2 DDs.11
The weights on each 2x2 DD combine the absolute size of the subsample and the variance of the fixed-effects-adjusted

reatment variable in the subsample.12 The first part is the size of the subsample squared. The second part of each weight
s the subsample variance from Eqs. (7)–(9), which comes from the relative size of the treatment and control groups and
he timing of treatment. The variance is larger when the two timing groups are closer in size (nkU ≈ 0.5) and when
reatment occurs closer to the middle of the time window (Dk,

Dk−Dℓ

1−Dℓ
, or Dℓ

Dk
are close to 0.5).

In Fig. 2, the 2x2 DDs with timing group k as the treatment group get the most weight. I assume equal group sizes so
that the weights are completely determined by timing. I set k and ℓ so that Dk = 0.66 and Dℓ = 0.16. For treated/untreated
DDs, skU > sℓU because k is closer to the middle of the panel than ℓ is, which means: Dk

(
1 − Dk

)
= 0.22 > 0.13 =

Dℓ

(
1 − Dℓ

)
. This is also true for the timing-only 2x2 DDs. Timing group k’s treatment share during the PRE(ℓ) period is

Dk−Dℓ

1−Dℓ
=

0.66−0.16
0.84 = 0.59, but timing group ℓ’s pre-period accounts for 1 − Dℓ = 0.84 share of the periods. Timing group

ℓ’s treatment share during the POST (k) period, on the other hand, is Dℓ

Dk
=

0.16
0.66 = 0.24, and timing group k’s post-period

accounts for Dk = 0.66 share of the periods. Therefore, skkℓ > sℓkℓ because β̂k
kℓ has a higher variance from treatment timing

alone and it uses more data:
(
1 − Dℓ

)2 Dk−Dℓ

1−Dℓ

1−Dk
1−Dℓ

= 0.17 > 0.08 = Dk
2 Dℓ

Dk

Dk−Dℓ

Dk
. Scaling by the overall variance of D̃it

shows that the weights are
{
skU , sℓU , skkℓ, s

ℓ
kℓ

}
= {0.37, 0.22, 0.28, 0.13}. β̂DD equals 11.75 even though the average of the

treatment effects is 12.5 because TWFEDD puts more weight on the early group which in this example has a smaller effect
(10 versus 15).

Theorem 1 implies that changing the number or spacing of time periods changes the weights (in addition to potentially
changing the 2x2 DDs). Imagine adding T periods to the end of Fig. 2. In that case, Dk = 0.83 and Dℓ = 0.58 and timing
group ℓ is treated closer to the middle of the panel than timing group k. The weights change to

{
skU , sℓU , skkℓ, s

ℓ
kℓ

}
=

{0.25, 0.43, 0.07, 0.25}. 2x2 DDs in which timing group ℓ is the treatment group get twice as much weight in this case;
68 percent with 2T periods versus 35 percent with T periods. In this case β̂DD equals 13.4. Therefore, panel length alone
can change TWFEDD estimates substantially even if the 2x2 DDs themselves are constant.

Theorem 1 also shows how DD compares two treated groups. A two-group ‘‘timing-only’’ estimator is itself a weighted
average of the 2x2 DDs plotted in panels C and D of Fig. 2:

β̂2x2
kℓ ≡

µkℓ  (
1 − Dℓ

)2
V̂D,k
kℓ(

1 − Dℓ

)2
V̂D,k
kℓ + Dk

2
V̂D,ℓ
kℓ

β̂
2x2,k
kℓ

+

1−µkℓ  
Dk

2
V̂D,ℓ
kℓ(

1 − Dℓ

)2
V̂D,k
kℓ + Dk

2
V̂D,ℓ
kℓ

β̂
2x2,ℓ
kℓ . (11)

Both timing groups serve as controls for each other during periods when their treatment status does not change, and the
weight assigned to the 2x2 terms comes from how large is their subsample and how large is their treatment variance.

10 Appendices available at: http://goodman-bacon.com/pdfs/ddtiming_appendix.pdf.
11 Units that are treated before t = 1, ‘‘always-treated units’’, enter the DD decomposition just like untreated units in the sense that they only
ever serve as controls in terms like β̂2x2

kU with weights like skU . In Section 2 I discuss the theoretical issues with always-treated units.
12 Many other least-squares estimators weight heterogeneity this way. A univariate regression coefficient equals an average of coefficients in
utually exclusive (and demeaned) subsamples weighted by size and the subsample x -variance:

α̂ =

∑
i (yi − y) (xi − x)∑

i (xi − x)2
=

∑
A(y − y)(x − x) +

∑
B(y − y)(x − x)∑

i(x − x)2
=

nAsAxy + nBsBxy
s2xx

=
nAs2,Axx

s2xx
α̂A +

nBs2,Bxx

s2xx
α̂B

imilarly, two-stage least squares uses samples sizes and variances to ‘‘efficiently combine alternative Wald estimates’’ (Angrist, 1991). Gibbons
t al. (2018) show an analogous weighting formula for one-way fixed effects. Panel data provide another well-known example: a pooled regression
oefficients equals a variance-weighted average of two distinct estimators that each use less information: the between estimator for subsample
eans, and the within estimator for deviations from subsample means.
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n (11), µkℓ simplifies to 1−Dk
1−(Dk−Dℓ)

, which falls as Dk gets closer to one (t∗k gets closer to the first time period). In
ther words, the timing group treated closest to the middle of the panel gets more weight. In the three group example
kℓ = 0.34/0.5 = 0.68.13
Theorem 1 is not the only way to decompose the TWFEDD estimator. Strezhnev (2018), Eq. (15) decomposes β̂DD

nto an unweighted average of comparisons between all units and all time periods so that the weights across types of
omparisons (2x2 DDs) are only implicitly defined. Athey and Imbens (2018, equation 4.3) decompose β̂DD into terms
epresenting causal effects over different time-horizons. By grouping 2x2 terms according to the identifying variation
pre/post, treatment/control) that unites them, my ‘‘group-level’’ decomposition yields clear definitions for the weights
nd connects them to the features of the OLS estimation method. See Appendix D for more details on the relationship
etween decompositions.
The DD Decomposition theorem is different from related results that decompose the TWFEDD estimand into a weighted

verage of treatment effect parameters with potentially negative weights (Borusyak and Jaravel, 2017; de Chaisemartin
nd D’Haultfœuille, 2020). Theorem 1 expresses the TWFEDD estimator as a weighted average of simpler estimators with
trictly positive weights that sum to 1. Section 2 shows how these results are connected.

. Theory: What parameter does DD identify and under what assumptions?

Theorem 1 relates the regression DD coefficient to sample averages, which makes it simple to analyze its statistical
roperties by writing β̂DD in terms of potential outcomes (Holland, 1986; Rubin, 1974). Define Yit (k) as the outcome

of unit i in period t when it is treated at ti = k, and use Yit (ti) to denote treated potential outcomes under unit i’s
actual treatment date. Yit (0) is the untreated potential outcome. If t < ti then Yit (ti) = Yit (0). The observed outcome
is yit = DitYit (ti) + (1 − Dit) Yit (0). Following Callaway and Sant’Anna (2020) define the ATT for timing group k at time
τ ≥ k (the ‘‘group-time average treatment effect’’): ATTk (τ ) ≡ E

[
Yiτ
(
t∗k
)
− Yiτ (0) |ti = k

]
. Because TWFEDD averages

outcomes in pre- and post-treatment windows, I define the average ATTk (τ ) in a date range W (with TW periods):

ATTk (W ) ≡
1
TW

∑
t∈W

E [Yit (k) − Yit (0) |ti = k] . (12)

n practice, W will represent post-treatment windows that appear in the 2x2 components. Finally, define the difference
ver time in average untreated potential outcomes as:

∆Y 0
k (W1,W0) ≡

1
TW1

∑
t∈W1

E [Yit (0)|ti = k] −
1

TW0

∑
t∈W0

E [Yit (0)|ti = k] . (13)

Applying this notation to the 2x2 DDs in Eqs. (4)–(6), adding and subtracting average untreated outcomes for the treatment
group yields the familiar result that (the probability limit of) each 2x2 DD equals an ATT plus bias from differential trends:

β2x2
kU = ATTk (POST (k)) +

[
∆Y 0

k (POST (k), PRE(k)) − ∆Y 0
U (POST (k) , PRE (k))

]
(14a)

β
2x2,k
kℓ = ATTk (MID (k, ℓ)) +

[
∆Y 0

k (MID (k, ℓ) , PRE(k)) − ∆Y 0
ℓ (MID (k, ℓ) , PRE (k))

]
(14b)

β
2x2,ℓ
kℓ = ATTℓ (POST (ℓ)) +

[
∆Y 0

ℓ (POST (ℓ),MID (k, ℓ)) − ∆Y 0
k (POST (ℓ) ,MID (k, ℓ))

]
− [ATTk (POST (ℓ)) − ATTk (MID (k, ℓ))] . (14c)

Note that the definition of common trends in (14a) and (14b) involves only untreated potential outcomes, but in (14c)
dentification of ATTℓ (POST (ℓ)) additionally involves changes in average treatment effects in the already-treated control
roup.
Substituting Eqs. (14a)–(14c) into the DD decomposition theorem expresses the probability limit of the TWFEDD

stimator (assuming that T is fixed and N grows) in terms of potential outcomes and separates the estimand from the
dentifying assumptions:

plim
N→∞

β̂DD
=βDD

= VWATT + VWCT − ∆ATT . (15)

he first term in (15) is the interpretable causal parameter that TWFEDD can estimate, which I call the ‘‘variance-weighted
verage treatment effect on the treated’’ (VWATT):

VWATT ≡

∑
k̸=U

σkUATTk (POST (k)) +

∑
k̸=U

∑
ℓ>k

[
σ k
kℓATTk (MID (k, ℓ)) + σ ℓ

kℓATTℓ (POST (ℓ))
]
. (15a)

13 Two recent papers use two-group timing-only estimators. Malkova (2017) studies a maternity benefit policy in the Soviet Union and Goodman
(2017) studies high school math mandates. Both papers show differences between early and late groups before the reform, PRE(k), during the period
when treatment status differs, MID(k, ℓ), and in the period after both have implemented reforms, POST (ℓ).
260



A. Goodman-Bacon Journal of Econometrics 225 (2021) 254–277

T
t

L
t
i
d
2

B
u
t
n
m
D
S

t
a
m
t
s

3

a

3

I

he σ terms are probability limits of the weights in (10a).14 VWATT is a positively weighted average of ATTs for the
reatment groups and post-periods across the 2x2 DDs that make up β̂DD.

The second term, which I call ‘‘variance-weighted common trends’’ (VWCT) generalizes common trends to a setting
with timing variation:

VWCT ≡

∑
k̸=U

σkU
[
∆Y 0

k (POST (k) , PRE (k)) − ∆Y 0
U (POST (k) , PRE (k))

]
+

∑
k̸=U

∑
ℓ>k

[
σ k
kℓ

{
∆Y 0

k (MID (k, ℓ) , PRE (k)) − ∆Y 0
ℓ (MID (k, ℓ) , PRE (k))

}
+σ ℓ

kℓ

{
∆Y 0

ℓ (POST (ℓ) ,MID (k, ℓ)) − ∆Y 0
k (POST (ℓ) ,MID (k, ℓ))

}]
. (15b)

ike VWATT, VWCT is an average of the difference in counterfactual trends between pairs of timing groups and different
ime periods using the weights from the decomposition theorem. It captures the way that differential trends map to bias
n (10a). Note that one timing group’s counterfactual trend affects many 2x2 DDs by different amounts and in different
irections depending on whether it is the treatment or control group. While the mapping from trends to bias in a given
x2 is clear, this result for a design with timing is new.
The last term in (15) equals a weighted sum of the change in treatment effects within each timing group’s before and

after a later treatment time:

∆ATT ≡

∑
k̸=U

∑
ℓ>k

σ ℓ
kℓ [ATTk (POST (ℓ)) − ATTk (MID (k, ℓ))] . (15c)

ecause the 2x2 estimators in Eq. (14c) already-treated groups as controls, they subtract average changes in their
ntreated outcomes and their treatment effects. ∆ATT equals zero if average treatment effects are constant, but when
hey are not, Eq. (15c) defines the resulting bias relative to VWATT even when VWCT = 0. ∆ATT is the source of the
egative weights discussed in Borusyak and Jaravel (2017) and de Chaisemartin and D’Haultfœuille (2020). This does not
ean that the research design is invalid. In this case specifications such as an event-study (Jacobson et al., 1993), ‘‘stacked
D’’ (Cengiz et al., 2019; Deshpande and Li, 2019; Fadlon and Nielsen, 2015), or reweighting estimators (Callaway and
ant’Anna, 2020) may be more appropriate.15
Units that are treated throughout the sample can only ever act as controls (in fact they enter into the decomposition

heorem exactly like never-treated units), so if their treatment effects are changing during the sample periods they will
lso contribute to ∆ATT . The form of the weights suggests that changes in the treatment effects for always-treated units
ay dominate ∆ATT . 2x2 DDs in which always-treated units are the control group use all time periods (as opposed to

he smaller windows used in β̂ℓ
kℓ), so they get higher weight in (10a). If their treatment effects are changing they can

ubstantially bias TWFEDD away from VWATT.

.1. Interpreting the TWFEDD estimand

When the treatment effect is a constant, ATTk (W ) = ATT , ∆ATT = 0, and VWATT = ATT . The rest of this section
ssumes that VWCT = 0 and discusses how to interpret VWATT under different forms of treatment effect heterogeneity.

.1.1. Effects that vary across units but not over time
If treatment effects are constant over time but vary across units, then ATTk (W ) = ATTk and we still have ∆ATT = 0.

n this case DD identifies:

VWATT =

∑
k̸=U

ATTk

⎡⎢⎢⎢⎢⎢⎣
≡wT

k  
σkU +

k−1∑
j=1

σ k
jk +

K∑
j=k+1

σ k
kj

⎤⎥⎥⎥⎥⎥⎦ . (16)

14 Note that a DD estimator is not consistent if T gets large because the permanently turned on treatment dummy becomes collinear with the
unit fixed effects ( X

′X
T does not converge to a positive definite matrix). Asymptotics with respect to T require the time dimension to grow in both

directions (see Perron, 2006).
15 Recent DD research comes to related conclusions about DD with timing, but does not describe the full estimator as in Eq. (15). Borusyak and
Jaravel (2017), de Chaisemartin and D’Haultfœuille (2020), and Sun and Abraham (2020) begin by imposing pairwise common trends (VWCT = 0),
and then incorporating ∆ATT into the DD estimand. The structure of the decomposition theorem, however, suggests that we should think of ∆ATT
as a source of bias because it arises from the way equation (2) forms ‘‘the’’ control group. This distinction, made clear in Eq. (15), separates a causal
estimand (VWATT ) from clearly defined identifying assumptions (VWCT = 0 and ∆ATT = 0). This follows from at least two related precedents.
de Chaisemartin and D’Haultfœuille (2018, p. 5), prove identification of dose–response DD models under an assumption on the treatment effects:
‘‘the average effect of going from 0 to d units of treatment among units with D(0) = d is stable over time’’. Treatment effect homogeneity ensures an
estimand with no negative weights. Similarly, the monotonicity assumption in Imbens and Angrist (1994) ensures that the local average treatment
effect does not have negative weights.
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WATT weights together the group-specific ATTs not by sample shares, but by a function of sample shares and treatment
ariance. The weights in (16) are equal to the sum of the decomposition weights for all the terms in which timing group
acts as the treatment group, defined as wT

k .
In general, wT

k ̸= n∗

k , so VWATT does not equal the sample ATT .16 Neither are the weights proportional to the share
f time each unit spends under treatment, so VWATT also does not equal the effect in the average treated period. The
xtent to which VWATT differs from the ATT depends on the relationship between treatment effect heterogeneity and
reatment timing in a given sample. For example, a Roy model of selection on gains implies that treatment rolls out
irst to units with the largest effects. Site selection in experimental evaluations of training programs (Joseph Hotz et al.,
005) and energy conservation programs (Allcott, 2015) match this pattern. In this case, regression DD underestimates
he sample-weighted ATT if treatment rolls out in the first half of the sample and overestimates it if treatment rolls out in
he second half. The opposite conclusions follow from ‘‘reverse Roy’’ selection where units with the smallest effects select
reatment first, which describes the take up of housing vouchers (Chyn, 2018) and charter school applications (Walters,
018). Both the model of treatment allocation and characteristics of the sample matter for interpretation.
An easy way to gauge whether VWATT differs from a sample-weighted ATT is to scatter the weights from (16), wT

k ,
gainst each timing group’s sample share among the treated, nk

1−nU
. These two may be close if there is little variation in

treatment timing or if one timing group is very large. Conversely, weighting matters less if the ATTk’s are similar, which
one can evaluate by aggregating each timing group’s 2x2 DD estimates from the decomposition theorem. Finally, one could
directly compare TWFEDD to estimators that target a particular parameter of interest. Several alternative estimators give
differently weighted averages of ATTs (Borusyak and Jaravel, 2017; de Chaisemartin and D’Haultfœuille, 2020; Sun and
Abraham, 2020).

3.1.2. Effects that vary over time but not across units
Time-varying treatment effects shape Eq. (15) in two ways. First, they generate heterogeneity across the 2x2 DDs

that average over different post-treatment windows and up-weight short-run effects most likely to appear in the small
windows between timing groups. These features typically make VWATT different than the sample ATT . Second, time-
varying effects bias estimates away from VWATT because ∆ATT ̸= 0. Eqs. (14b) and (14c) show that common trends in
counterfactual outcomes leaves one set of timing terms biased (β̂2x2,ℓ

kℓ ), while common trends between counterfactual and
reated outcomes leaves the other set biased (β̂2x2,k

kℓ ).
To illustrate this point, Fig. 3 plots a case where counterfactual outcomes are identical, but the treatment effect is

a linear trend-break, Yit (ti) = Yit (0) + φ · (t − ti + 1) (see Meer and West, 2016). β̂
2x2,k
kℓ uses timing group ℓ as a

control group during its pre-period and identifies the ATT during the middle window in which treatment status varies:
ATT (MID (k, ℓ)) = φ (ℓ−(k−1))

2 . β̂2x2,ℓ
kℓ however, is biased for ATT (POST (ℓ)) because the control group (k) experiences a trend

n outcomes due to its growing treatment effect17:

β̂
2x2,ℓ
kℓ =

φ
(T−(ℓ−1))

2  
ATTℓ (POST (ℓ)) −

∆ATT/(1−µkℓ)  
φ

(T − (k − 1))
2

= φ
(k − ℓ)

2
≤ 0. (17)

his bias feeds through to β2x2
kℓ according to the relative weight on the 2x2 terms:

β̂2x2
kℓ = φ

[
(
σ k
kℓ − σ ℓ

kℓ

)
(ℓ − k) + 1]
2

. (18)

The entire two-group timing estimate can be wrong signed if there is sufficiently more weight on β̂
2x2,ℓ
kℓ than β̂

2x2,k
kℓ

(i.e. σ ℓ
kℓ > σ k

kℓ). Summarizing time-varying effects using Eq. (2) yields estimates that are too small or even wrong-signed,
and should not be used to judge the meaning or plausibility of effect sizes.18

16 Sun and Abraham (2020), Borusyak and Jaravel (2017), Chernozhukov et al. (2013), de Chaisemartin and D’Haultfœuille (2020), Gibbons et al.
(2018) and Wooldridge (2005) all make a similar observation. The DD decomposition theorem, provides a new solution for the relevant weights.
17 The average of the effects for timing group k during any set of positive event-times, t − ti , is just φ times the average event-time. The MID(k, ℓ)
eriod contains event-times 0 through ℓ − (k − 1) and the POST (ℓ) period contains event-times ℓ − (k − 1) through T − (k − 1), so we have:

ATTk (MID (k, ℓ)) = φ
(ℓ − k) (ℓ − (k − 1))

2 (ℓ − k)
= φ

ℓ − (k − 1)
2

,

ATTk (POST (ℓ)) = φ (ℓ − k) + φ
T − ℓ + 2

2
,

nd the difference, which appears in the identifying assumption in (17) equals:

ATTk (POST (ℓ)) − ATTk (MID (k, ℓ)) = φ (ℓ − k) + φ
T − ℓ + 2

2
− φ

ℓ − (k − 1)
2

=
φ

2
(T − (k − 1)) .

Outcomes in group ℓ actually fall on average relative to group k, which makes the DD estimate negative even when all treatment effects are positive.
18 Borusyak and Jaravel (2017) show that common, linear trends, in the post- and pre- periods cannot be estimated in this design. The decomposition
heorem shows why: timing groups act as controls for each other, so permanent common trends difference out. This is not a meaningful limitation
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Fig. 3. Difference-in-Differences estimates with variation in timing are biased when treatment effects vary over time. Notes: The figure plots a
tylized example of a timing-only DD set up with a treatment effect that is a trend-break rather than a level shift (see Meer and West, 2016).
he trend-break effect equals φ · (t − ti + 1). The top of the figure notes which event-times lie in the PRE(k), MID(k, ℓ), and POST (ℓ) periods for

each unit. The figure also notes the average difference between timing groups in each of these periods. In the MID(k, ℓ) period, outcomes differ
by φ

2 (ℓ − (k − 1)) on average. In the POST (ℓ) period, however, outcomes had already been growing in the early group for ℓ − k periods, and so
they differ by φ (ℓ − (k − 1)) on average. The 2x2 DD that compares the later-treated group to the earlier-treated group is biased and, in the linear
trend-break case, weakly negative despite a positive and growing treatment effect.

Note that this bias is specific to a single-coefficient specification. More flexible event-study specifications may not suffer
from this problem (although see Proposition 2 in Sun and Abraham, 2020). Fadlon and Nielsen (2015) and Deshpande
and Li (2019) match treated units with controls that receive treatment a given amount of time later and gives an average
of β̂

2x2,k
kℓ terms with a fixed post-period (see similar proposals in Sun and Abraham, 2020; Borusyak and Jaravel, 2017;

de Chaisemartin and D’Haultfœuille, 2020). Callaway and Sant’Anna (2020) discuss how to aggregate heterogeneous
treatment effects and develop a reweighting estimator to do so.

3.2. What is the identifying assumption for VWATT?

The preceding analysis maintained the assumption of equal counterfactual trends across timing groups, but (15) shows
that when ∆ATT = 0 identification of VWATT only requires VWCT = 0. Assuming linear average untreated potential
outcome trends (Y kt (0) − Y kt−1(0) = ∆Y 0

k for all t) leads to a convenient and intuitive approximation to VWCT as an
verage of each timing group’s average trend in Y (0) weighted by the difference between its weight as a treatment group
wT

k from Eq. (16)) and a similar term measuring its weight as a control group19:

VWCT ≈

∑
k̸=U

∆Y 0
k

⎡⎣⎛⎝σkU +

k−1∑
j=1

σ k
jk +

K∑
j=k+1

σ k
kj

⎞⎠−

⎛⎝ k−1∑
j=1

σ
j
jk +

K∑
j=k+1

σ
j
kj

⎞⎠⎤⎦− ∆Y 0
U

∑
k̸=U

σkU

=

∑
k

∆Y 0
k

[
wT

k − wC
k

]
. (19)

Eq. (19) generalizes the definition of common trends to the timing case and shows how a given timing group’s
counterfactual trend biases the overall estimate. To illustrate, assume there is a positive differential trend in timing group
k only: ∆Y 0

k > 0. This will bias β̂2x2
kU by ∆Y 0

k which gets a weight of σkU in the full estimate. In 2x2 DDs base on timing,

for treatment effect estimation, though, because ‘‘effects’’ must occur after treatment. Job displacement provides a clear example Jacobson et al.
(1993), Krolikowski (2017). Comparisons based on displacement timing cannot identify whether all displaced workers have a permanently different
earnings trajectory than never displaced workers (the unidentified linear component), but they can identify changes in the time-path of earnings
around the displacement event (the treatment effect).
19 Linearly trending unobservables lead to larger bias in 2x2 DDs that use more periods. In the linear case, differences in the magnitude of the
ias cancel out across each group’s ‘‘treatment’’ and ‘‘control’’ terms, and Eq. (19) holds.
263



A. Goodman-Bacon Journal of Econometrics 225 (2021) 254–277

t
t

t
g
T
p

w
a
t

4

o
r
‘
1
f

Fig. 4. Weighted common trends: The treatment/control weights as a function of the share of time spent under treatment. Notes: The figure plots
the weights that determine each timing group’s importance in the weighted common trends expression in Eqs. (16) and (17).

however, biases offset each other. Take the comparisons to timing group 1, for example. When timing group k is the
reatment group in β̂

2x2,k
1k , the bias equals ∆Y 0

k and is weighted by σ k
1k. When timing group k is the control group in β̂

2x2,1
1k ,

he bias equals −∆Y 0
k and is weighted by σ 1

1k. On net the bias in β̂2x2
1k is ambiguous: ∆Y 0

k

(
σ k
1k − σ 1

1k

)
.

Similar expressions hold for the comparison of timing group k to every other group, and the total weight on each
iming group’s counterfactual trend equals the difference between the total weight it gets when it acts as a treatment
roup – wT

k from Eq. (16) – minus the total weight it gets when it acts as a control group—wC
k ≡

∑k−1
j=1 σ

j
jk +

∑K
j=k+1 σ

j
kj.

his difference is a new result that maps (linear) differential trends to bias.20 A positive trend in timing group k induces
ositive bias when wT

k − wC
k > 0, negative bias when wT

k − wC
k < 0, and no bias when wT

k − wC
k = 0.21

Fig. 4 plots wT
k − wC

k as a function of D assuming equal group sizes. Units treated in the middle of the panel have high
treatment variance and get a lot of weight when they act as the treatment group, while units treated toward the ends
of the panel get relatively more weight when they act as controls. As k approaches 1 or T, wT

k − wC
k becomes negative

hich means that some timing groups effectively act as controls. This defines ‘‘the’’ control group in timing-only designs:
ll timing groups are controls in some terms, but the earliest and/or latest units necessarily get more weight as controls
han treatments.

. DD decomposition in practice: Unilateral divorce and female suicide

To illustrate how to use DD decomposition theorem in practice, I replicate Stevenson and Wolfers’ (2006) analysis
f no-fault divorce reforms and female suicide. Unilateral (or no-fault) divorce allowed either spouse to end a marriage,
edistributing property rights and bargaining power relative to fault-based divorce regimes. Stevenson and Wolfers exploit
‘the natural variation resulting from the different timing of the adoption of unilateral divorce laws’’ in 37 states from
969–1985 (see Table 1) using the ‘‘remaining fourteen states as controls’’ to evaluate the effect of these reforms on
emale suicide rates.

20 Applications typically discuss bias in general terms, arguing that unobservables must be ‘‘uncorrelated’’ with timing, but have not been able
to specify how counterfactual trends would bias a two-way fixed effects estimate. For example, Almond et al. (2011, p. 389–390) argue: ‘‘Counties
with strong support for the low-income population (such as northern, urban counties with large populations of poor) may adopt FSP earlier in the
period. This systematic variation in food stamp adoption could lead to spurious estimates of the program impact if those same county characteristics
are associated with differential trends in the outcome variables’’.
21 Clearly these results hold only under the assumption of linearity. This, however, is a common starting point, it approximates non-linear pre-
trends, and it provides a simple way to increase the power of such pre-tests (see Bilinski and Hatfield, 2019). The decomposition weights could
be combined with assumptions about post-treatment trend-breaks in a partial identification framework (Rambachan and Roth, 2019). Finally, when
pre-treatment covariates are not measured at the same frequency as yit then one must construct balance tests ‘‘by hand’’ since using confounders
as outcomes in a fixed effects regression in a different sample will not rely on the same weights. Eq. (19) suggests a way to do so.
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Table 1
The no-fault divorce rollout: Treatment times, timing group sizes, and treatment shares.

No-fault divorce year (k) Number of states Share of states (nk) Treatment share (Dk)

Non-reform states 5 0.10 .
Pre-1964 reform states 8 0.16 .
1969 2 0.04 0.85
1970 2 0.04 0.82
1971 7 0.14 0.79
1972 3 0.06 0.76
1973 10 0.20 0.73
1974 3 0.06 0.70
1975 2 0.04 0.67
1976 1 0.02 0.64
1977 3 0.06 0.61
1980 1 0.02 0.52
1984 1 0.02 0.39
1985 1 0.02 0.36

Notes: The table lists the dates of no-fault divorce reforms from Stevenson and Wolfers (2006), the
number and share of states that adopt in each year, and the share of periods each treatment timing
group spends treated in the estimation sample from 1964 to 1996.

Fig. 5. Event-study and difference-in-differences estimates of the effect of no-fault divorce on female suicide: Replication of Stevenson and Wolfers
(2006). Notes: The figure plots event-study estimates from the two-way fixed effects regression equation on page 276 and plotted in Fig. 1 of
Stevenson and Wolfers (2006), along with the DD coefficient. The specification does not include other controls and does not weight by population.
Standard errors are robust to heteroskedasticity.

Fig. 5 replicates their event-study result for female suicide using an unweighted specification with no covariates.22

ur results match closely: suicide rates display no clear trend before the implementation of unilateral divorce laws, but
egin falling soon after. They report a DD coefficient in logs of −9.7 (s.e. = 2.3). I find a DD coefficient in levels of −3.08
s.e. = 1.13), or a proportional reduction of 6 percent.23

22 Data on suicides by age, sex, state, and year come from the National Center for Health Statistics’ Multiple Cause of Death files from 1964 to
1996, and population denominators come from the 1960 Census (Haines and ICPSR, 2010) and the Surveillance, Epidemiology, and End Results data
(SEER, 2013). The outcome is the age-adjusted (using the national female age distribution in 1964) suicide mortality rate per million women. The
average suicide rate in my data is 52 deaths per million women versus 54 in Stevenson and Wolfers (2006). My replication analysis uses levels to
match their Figure, but the conclusions all follow from a log specification as well.
23 The differences in the magnitudes likely come from three sources: age-adjustment (the original paper does not describe an age-adjusting
procedure); data on population denominators; and my omission of Alaska and Hawaii.
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Fig. 6. Difference-in-differences decomposition for unilateral divorce and female suicide. Notes: The figure plots each 2x2 DD components from the
decomposition theorem against their weight for the unilateral divorce analysis. The open circles are terms in which one timing group acts as the
treatment group and the pre-1964 reform states act as the control group. The closed triangles are terms in which one timing group acts as the
treatment group and the non-reform states act as the control group. The x’s are the timing-only terms. The figure notes the average DD estimate
and total weight on each type of comparison. The two-way fixed effects estimate, −3.08, equals the average of the y-axis values weighted by their
-axis value.

.1. Describing the design

Fig. 6 uses the DD decomposition theorem to illustrate the sources of variation. I plot each 2x2 DD against its weight
nd calculate the average effect and total weight for the three types of 2x2 comparisons: treated/untreated, early/late,
ate/early.24 The two-way fixed effects estimate, −3.08, is an average of the y-axis values weighted by their x-axis values.
umming the weights on timing terms (skkℓ and sℓkℓ) shows how much of β̂DD comes from timing variation (37 percent).
he large untreated group puts a lot of weight on β̂2x2

kU terms, but more on those involving pre-1964 reform states (38.4
ercent) than non-reform states (24 percent). Fig. 6 also highlights the role of a few influential 2x2 DDs. Comparisons
etween the 1973 states and non-reform/pre-1964 reform states account for 18 percent of the estimate, and the ten
ighest-weight 2x2 DDs account for over half.
The bias resulting from time-varying effects is also apparent in Fig. 6. The average of the post-treatment event-study

stimates in Fig. 5 is −4.92, but the DD estimate is 60 percent as large. The difference stems from the comparisons of later-
o earlier-treated groups. The average treated/untreated estimates are negative (−5.33 and −7.04) as are the comparisons
f earlier- to later-treated states (although less so: −0.19).25 The comparisons of later- to earlier-treated states, however,
re positive on average (3.51) and account for the bias in the overall DD estimate. Using the decomposition theorem to take
hese terms out of the weighted average yields an effect of −5.44—close to the average of the event-study coefficients.

Fig. 7 plots the weights that each timing group gets in VWCT for the unilateral divorce analysis in solid gray circles
longside each timing group’s share of the sample, nk, in open squares. The earliest-treated states have systematically
et less weight than their sample shares because their treatment variance is low. The 1970 states get almost no weight
wT

k −wC
k = 0.0039) so a differential trend in this timing group cancels out across 2x2 DDs and has little effect on β̂DD.26

tates that implemented unilateral divorce in 1969 get more weight as controls than they do as treatments. I also plot
he common trends weights for a specification that drops always- and never-treated states in solid black triangles. In this
ample states treated before 1973 get more weight as controls than treatments.

24 There are 156 distinct DD components: 12 comparisons between timing groups and pre-reform states, 12 comparisons between timing groups
and non-reform states, and

(
122

− 12
)
/2 = 66 comparisons between an earlier switcher and a later non-switcher, and 66 comparisons between a

later switcher and an earlier non-switcher.
25 This point also applies to units that are already treated at the beginning of the panel, like the pre-1964 reform states in the unilateral divorce
analysis. Since their Dk = 1 they can only act as a control group. If the effects for pre-1964 reform states had stabilized by 1969 they would not
ause bias, but this is a particular version of the assumption that ∆ATT = 0.
26 Adding a trend of 5 × year to the suicide rate for the 1970 states changes the DD estimate from −3.08 to −2.75, but adding it to the 1973
tates (wT

− wC
= 0.18) yields a very biased DD estimate of 12.28.
k k
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Fig. 7. Weighted common trends in the unilateral divorce analysis: The treatment/control weights on each timing group. Notes: The figure plots
the weights that determine each timing group’s role in the weighted common trends expression. These are show in solid triangles and equal the
difference between the total weight each treatment timing group receives in terms where it is the treatment group (wT

k ) and terms where it
s the control group (wC

k ): wT
k − wC

k . The solid circles show the same weights but for versions of each estimator that exclude the untreated (or
lready-treated) units and, therefore, are identified only by treatment timing. The open squares plot each timing group’s sample share.

. Alternative specifications

The results above refer to parsimonious regressions like (2), but researchers almost always estimate multiple speci-
ications and use differences to evaluate internal validity (Oster, 2016) or choose projects in the first place. This section
xtends the DD decomposition theorem to different weighting choices and control variables, providing simple new tools
or learning why estimates change across specifications.

The DD decomposition theorem suggests a simple way to understand why estimates change by writing the weighted
verage from Theorem 1 as a product a vector of 2x2 DDs and a vector of weights: β̂DD

= s′β̂
2x2

. When a different
stimator can also be written as a function of 2x2 DDs—β̂DD

alt = s′

alt β̂
2x2
alt —the difference between the two specifications

has the form of a Oaxaca–Blinder–Kitagawa decomposition (Blinder, 1973; Oaxaca, 1973; Kitagawa, 1955):

β̂DD
alt − β̂DD

=

Due to 2x2 DDs  
s′

(
β̂
2x2
alt − β̂

2x2)
+

Due to weights  (
s′

alt − s′
)
β̂
2x2

+

Due to interaction  (
s′

alt − s′
) (

β̂
2x2
alt − β̂

2x2)
. (20)

Dividing by β̂DD
alt − β̂DD shows the proportional contribution of changes in the 2x2 DD’s, changes in the weights, and the

interaction of the two.27 It is also simple to learn which terms drive each kind of difference by plotting β̂
2x2
alt against β̂

2x2

nd s against salt .

.1. Weighting

Population weighting increases the influence of large units in means of y that make up each 2x2 DD (which affects
ˆ
2x2
WLS − β̂

2x2
OLS ), and it increases the influence of terms involving large groups by basing the decomposition weights on

opulation rather than sample shares (which affects s′

WLS −s′

OLS ).
28 In Table 2, population weighting changes the unilateral

27 Grosz et al. (2018) propose a similar decomposition for family fixed effects estimates.
28 One common robustness check is to drop untreated units, and the decomposition theorem shows that this is equivalent to setting all skU = 0
nd rescaling the skℓ to sum to one. In Table 2, this actually makes the unilateral divorce estimate positive (2.42, s.e. = 1.81). The average of the
arly/late and late/early DDs in Fig. 6 using the decomposition weights is: (0.264/.374) · 3.51 + (0.11/.374) · −0.19 = 2.42. The sign flip occurs
ecause half of the timing terms are biased by time-varying treatment effects.
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D estimates of the effect of unilateral divorce analysis on female suicide: Alternative specifications.

(1) (2) (3) (4) (5) (6) (7) (8)

Baseline No untreated
states

WLS Propensity score
weighting

Controls Unit-specific
trends

Group-specific
pre-trends

Region-by-year
fixed effects

Unilateral divorce −3.08 2.42 −0.35 1.04 −2.52 0.59 −6.52 −1.16
[1.27] [1.81] [1.97] [1.78] [1.09] [1.35] [2.98] [1.37]

Difference from baseline specification 5.50 2.73 4.12 0.56 3.67 −3.44 1.92
Share due to:

2x2 DDs 0 0.52 1 0.22 0.90 1 0.37
Weights 1 0.39 0 0.05 0.47 0 0.76
Interaction 0 0.09 0 <0.01 −0.36 0 −0.13
Within term 0 0 0 0.73 0 0 0

Notes: The table presents DD estimates from the alternative specifications discussed in section III. Column (1) is the two-way fixed effects estimate
from Eq. (2). Column (2) drops the pre-1964 reform and non-reform states. Column (3) weights by state adult populations in 1964. Column (4)
weights by the inverse propensity score estimated from a probit model that contains the sex ratio, per-capita income, the general fertility rate, and
the infant mortality rate all measured in 1960. Column (5) controls for per-capita income, female homicide rates, and per-capita welfare caseloads.
Column (6) includes state-specific linear time trends. Column (7) comes from a two-step procedure that first estimates group-specific trends from
1964 to 1968, subtracts them from the suicide rate, and estimates Eq. (2) on the transformed outcome variable. Column (8) includes region-by-year
fixed effects. Below the standard errors I show the difference between each estimate and the baseline result, and the last three rows show the share
of this difference that comes from changes in the 2x2 DD’s, the weights, or their interaction as shown in Eq. (18).

divorce DD estimate from −3.08 to −0.35. Just over half of the difference comes from changes in the 2x2 DD terms, 38
ercent from changes in the weights, and 9 percent from the interaction of the two.29
Fig. 8 scatters the weighted 2x2 DDs against the unweighted ones. Most components do not change and lie along the

45-degree line, but large differences emerge for terms involving the 1970 states: Iowa and California.30 Weighting gives
ore influence to California, and makes the terms that use 1970 states as treatments more negative, while it makes terms

hat use them as controls more positive. This is consistent either with an ongoing downward trend in suicides in California
r, as discussed above, strongly time-varying treatment effects.31

.2. DD with controls

The ability to control for covariates is a common motivation for regression DD as it is thought to make a ‘‘common
rends’’ assumption more plausible. Cameron and Trivedi (2005, p. 770), observe that ‘‘an obvious extension is to include
egressors’’ and Angrist and Pischke (2009, p. 236) state ‘‘a further advantage of regression DD: it’s easy to add additional
ovariates’’. Theoretical analyses typically focus on time-invariant X i entered as a direct control in specifications like (1)
Sant’Anna and Zhao, 2018), or reweighting strategies that use X i itself or pre-treatment changes in covariates or outcomes
Abadie, 2005; Ben-Michael et al., 2019). Most applications, however, include time-varying controls X it :

yit = αi· + α·t + ΦX it + βDD|XDit + eit . (21)

This subsection derives a decomposition result like Theorem 1 for controlled TWFEDD specifications. Appendix A discusses
how covariates affect the theoretical properties of TWFEDD. Note that for covariates to aid in identification, they must be
unaffected by the treatment to avoid bias from ‘‘conditioning on a post-treatment variable’’ (Rosenbaum, 1984).

To see how the controlled DD coefficient is identified first remove unit- and time-means and then estimate a
Frisch–Waugh–Lovell regression that partials X̃ it out of D̃it :

D̃it =

p̃it
Γ X̃ it + d̃it . (22)

he index of covariates, p̃it ≡ Γ̂ X̃ it is a linear prediction of treatment status based on the sample-wide relationship
between X̃ it and D̃it (see Sloczynski, 2017). The covariate-adjusted treatment variable subtracts predicted treatment status

29 Solon et al. (2015) show that differences between population-weighted (WLS) and unweighted (OLS) estimates can arise in the presence of
unmodeled heterogeneity, and suggest comparing the two estimators (Deaton, 1997; Wooldridge, 2001).
30 Lee and Solon (2011) observe that California drives the divergence between OLS and WLS estimate in analyses of no-fault divorce on divorce
rates (Wolfers, 2006).
31 Weighting by a function of the estimated propensity score is often used to impose covariate balance between treated and untreated units
(Abadie, 2005). With timing variation this approach has two limitations. First, reweighting untreated observations has no effect on the timing terms.
Second, reweighting untreated observations by their propensity to be in any timing group does not impose covariate balance for each timing group.
By changing the relative weight on different untreated units but leaving their total weight the same, this strategy does not change s, so all differences
stem from the way reweighting affects the β̂2x2

kU terms. Table 2 estimates reweighted specification based on a propensity score equation that contains
the 1960 sex ratio and per-capita income, general fertility rate and infant mortality rate. This puts much more weight on Delaware and less weight
on New York, and makes almost all β̂2x2

kU much less negative, changing the overall DD estimate to 1.04. Callaway and Sant’Anna (2020) propose a
generalized propensity score reweighted estimator to exploit timing variation.
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Fig. 8. Comparison of 2x2 DD components and decomposition weights with and without population weights. Notes: Panel A plots the 2x2 DD
components from two-way fixed effects estimates that use population weights (y-axis) and do not (x-axis). The size of each point is proportional to
its weight in an OLS version of Eq. (7). WLS estimates are much smaller than OLS estimates, and this figure shows that the source of this discrepancy
is the 1970 no-fault divorce states, which include only Iowa and California. Weighting puts much more emphasis on California and, therefore, every
2x2 DD component involving the 1970 states. Dropping California changes yields an OLS estimate of −3.32 and a WLS estimate of −1.43.

from true treatment status: d̃it ≡

[(
Dit − Di

)
−

(
Γ̂X it − Γ̂X i

)]
−

[(
Dt − D

)
−

(
Γ̂X t − Γ̂X

)]
so that:

β̂DD|X
≡

Ĉ
(
yit , d̃it

)
V̂ d

=

Ĉ
(
yit , D̃it − p̃it

)
V̂ d

. (23)

ˆ DD|X exploits variation in both D̃it and p̃it . D̃it varies by timing group and before/after treatment times, but p̃it (generally)
aries across units, even those in the same treatment timing group and time period.
To derive a decomposition result for β̂DD|X first split d̃it into a ‘‘between’’ timing group term and a ‘‘within’’ timing group

erm by adding and subtracting group-by-year averages d −d =
(
D − D

)
−

(
Γ̂X − Γ̂X

)
. Let d̃ denote deviations
kt k kt k kt k i(k)t
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f dit from unit means and timing-group-by-year averages:
(
dit − di

)
−
(
dkt − dk

)
. I call this the ‘‘within’’ component of

d̃it . The only reason that d̃i(k)t is non-zero is because p̃it is not identical for units in the same timing group. Let d̃kt denote
a two-way fixed effects adjusted version of the mean of d̃it by timing group and year:

(
dkt − dk

)
−

(
dt − d

)
. d̃kt varies by

timing-group and time period only, just like D̃kt . I call this the ‘‘between’’ component of d̃it . Rewrite d̃it in terms of d̃i(k)t
and d̃kt , and substitute into Eq. (23):

d̃it =

d̃i(k)t  (
dit − di

)
−
(
dkt − dk

)
+

d̃kt  (
dkt − dk

)
−

(
dt − d

)
(24)

β̂DD|X
=

Ĉ
(
yit , d̃i(k)t

)
+ Ĉ

(
yit , d̃kt

)
V̂ d

=

Ω
V̂ d

w

V̂ d
β̂p

w +

1−Ω
V̂ d
b

V̂ d

β̂d
b  [

β̂DDV̂D
− β̂

p
b V̂

p
b

V̂ d
b

]
. (25)

I use the subscript w to denote within-timing-group terms and the subscript b to denote between-timing-group terms.
V̂ d

w is the variance of d̃i(k)t , the within component of the adjusted treatment variable. V̂ d
b and V̂ p

b are the variances of the
between components d̃kt and p̃kt . The term Ω ≡

V̂d
w

V̂d measures the share of the identifying variation that comes from
ithin-timing-group comparisons.

The within coefficient, β̂p
w ≡

Ĉ
(
yit ,d̃i(k)t

)
V̂d
w

, measures the relationship between yit and changes over time in d̃i(k)t across

nits in the same timing group.32 There is no variation in D̃it within timing groups, though, so d̃i(k)t only varies because
of predicted treatment status. β̂p

w compares units with the same treatment status but different predicted treatment paths.
Adding controls therefore introduces a new source of identifying variation—within-group changes in X it—that was not
there in the unadjusted version.

The ‘‘between’’ term in square brackets, β̂d
b ≡

Ĉ
(
yit ,d̃kt

)
V̂d
b

, comes from timing-group-by-time-period variation, just as in

Theorem 1. It contains the unadjusted DD coefficient β̂DD and subtracts β̂
p
b , the coefficient from a regression of yit on p̃kt

(the mean covariate index by timing group and time) and two-way fixed effects. Appendix A decomposes β̂d
b into adjusted

2x2 DDs as in Theorem 1:

β̂d
b =

∑
k

∑
ℓ>k

sb|Xkℓ  
(nk + nℓ)

2 V̂ d
b,kℓ

V̂ d
b

β̂d
b,kℓ  [

V̂D
kℓβ̂

2x2
kℓ − V̂ p

b,kℓβ̂
p
b,kℓ

V̂ d
b,kℓ

]
. (26)

he variances and coefficients in (26) parallel those in (25) but as the subscripts indicate they come from each two-group
ubsample.33 Controls change the estimate for the two reasons highlighted in Eq. (20). The weight on each 2x2 is based
n V̂ d

b,kℓ rather than V̂D
kl , which shows that covariates change the way TWFEDD weights subsample estimators. The 2x2

Ds contain the unadjusted terms, V̂D
kℓβ̂

2x2
kℓ , but also subtracts the subsample coefficient relating yit and p̃kt : V̂ p

b,kℓβ̂
p
b,kℓ,

which shows that covariates adjust the 2x2 estimates themselves.34

32 Because it comes from deviations of dit from timing-group-by-time means, β̂p
w is equivalent to regressing yit on unit fixed effects,

timing-group-by-time fixed effects, and dit .
33 Note that (26) decomposes β̂

DD|X
b by pairs of timing groups but does not break up the timing comparisons into terms corresponding to β̂

2x2,k
kℓ

and β̂
2x2,ℓ
kℓ . The control term, V̂ p

kℓβ̂
b
kℓ , cannot be easily written as an average across overlapping subsets of time (PRE(ℓ) and POST (k)).

34 The expression for controlled 2x2 terms in (26) does not come from estimating Eq. (21) on the subsamples. A controlled 2x2 DD – β̂
2x2|X
b,kℓ –

would come from adjusting for covariates on that subsample using predicted treatment status p̃kℓjt ≡ Γ kℓXkt . But β̂d
b,kℓ adjusts by predicted treatment

from the full sample, p̃jt . To see how the two relate, add and subtract p̃kℓjt in Ĉ
(
yjt , D̃jt − p̃jt

)
, the numerator of each β̂d

b,kℓ:

β̂d
b,kℓ =

Ĉ
(
yjt , D̃jt − p̃kℓjt

)
+ Ĉ

(
yjt , p̃kℓjt − p̃jt

)
V̂ d
b,kℓ

, j ∈ k, ℓ

=

(
1 − R2

kℓ

)
V̂D
kℓβ̂

2x2|X
kℓ + V̂ dp

b,kℓβ̂
dp
b,kℓ(

1 − R2
kℓ

)
V̂D
kℓ + V̂ dp

b,kℓ

he superscript dp refers to the difference between subsample and full sample predicted treatment, p̃kℓjt − p̃jt . V̂
dp
b,kℓ is its variance and β̂

dp
b,kℓ is the

egression coefficient relating it to yjt . R2
kℓ comes from the subsample Frisch–Waugh–Lovell regression. When R2

kℓ = 1, then p̃kℓjt = D̃jt and the estimate
ollapses back to β̂d

b,kℓ as defined in (25). In other words, adjusted 2x2 DDs still contribute even with Xkt and Dkt are perfectly collinear in the
ubsample. When Γ ≈ Γ , then V̂ dp

≈ 0 and β̂
2x2|d

≈ β̂
2x2|X .
kℓ b,kℓ b,kℓ kℓ
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Fig. 9. Adding controls creates within-timing-group comparisons: An example with the 1970 no-fault divorce states. Notes: Panel A plots the
reatment dummy and fitted values from the full-sample Frisch–Waugh–Lovell regression (predicted treatment status, p̃it ) for the 1970 states,
alifornia and Iowa. Panel B plots the difference in adjusted treatment variable, D̃it − p̃it , between California and Iowa and the same difference
n female suicide rates. Both fall over time and are highly correlated. The coefficient from a regression of the difference in suicide rates on
D̃1970,t − p̃CA,t

)
−

(
D̃1970,t − p̃IA,t

)
equals 465.9. This is the part of the within term in (22) that comes from the 1970 group.

Eqs. (25) and (26) give the full decomposition for a controlled specification:

β̂DD|X
= Ωβ̂p

w + (1 − Ω)
∑
k

∑
ℓ>k

sb|Xkℓ β̂
2x2|d
kℓ (27)

β̂p
w is the contribution of within-timing-group variation. (1 − Ω) is the weight on the covariate-adjusted between terms,

ˆ 2x2|d
kℓ each of which gets a weight of sb|Xkℓ .
In the unilateral divorce analysis, I add three covariates: female homicide rates, per-capita income, and the welfare

articipation rate. Column 5 of Table 2 reports a controlled DD estimate of −2.52 (s.e. = 1.09), almost 20 percent smaller
han the unadjusted coefficient. Most of the differences comes from the within term. Fig. 9 illustrates the within variation
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or the two 1970 no-fault divorce states, California and Iowa. The two states have the same values of D̃it by definition,
ut panel A shows that predicted treatment is falling slightly in California and rising slightly in Iowa. Panel B plots the
ifference in treatment deviations, d̃CA,t − d̃IA,t =

(
D̃CA,t − p̃CA,t

)
−

(
D̃IA,t − p̃IA,t

)
= p̃IA,t − p̃CA,t , and the difference in

suicide rates. The regression coefficient relating the two is large and positive (465.9). The full-sample within coefficient
β̂DD|X

w equals 80.01, but the within variance in predicted treatment is small (V̂ d
w = 0.005). Within-group variation from

the covariates therefore changes the DD estimate by Ω × β̂DD|X
w = 80.01 × 0.005 = 0.40, or 73 percent of the difference

across specifications.
Fig. 10 illustrates the controlled between term for the 1970 states compared to non-reform states, β̂

2x2|d
1970,NRS . Panel

A plots the treatment variable and the group-year means of predicted treatment status from the full-sample Frisch–
Waugh–Lovell regression. p̃kt does not change much indicating that covariates do not predict treatment very well. In fact
the R2 from (22) is just 0.0067. Panel B plots differences in the group-level adjusted treatment variable d̃1970,t − d̃NRS,t
and differences in suicide rates. Because the controls do not absorb very much treatment variation, the controlled 2x2
term (−22.4) is almost the same as the uncontrolled one (−22.3). These control variables do not explain the adoption of
no-fault divorce laws very well, but they are correlated with suicide rates across states that adopt these laws in the same
year.35

Appendix B analyzes two common controls strategies: unit-specific linear time trends and region-by-year fixed effects.
Column 6 of Table 2 shows that unit-specific trends change the unilateral divorce estimate to 0.59 (s.e. = 1.35), consistent
with the observation that trends over-control for time-varying treatment effects (Lee and Solon, 2011; Neumark et al.,
2014; Meer and West, 2016). I also propose a two-step strategy that fits linear trends by group in the pre-period only,
subtracts them from the outcome in all periods, and then estimates an uncontrolled regression on the transformed
outcome. This pre-trend-adjusted estimator is unaffected by effect dynamics and does not change the weights. Column 7
of Table 2 shows that adjusting for pre-trends only yields an estimate of −6.52 (s.e. = 2.98). The estimator with region-
by-year fixed effects (column 8 of Table 2) preserves the form of Theorem 1, but essentially applies it within each region
and then weights the 2x2s from different regions together by sample size. Note that 2x2s can drop out in this kind of
specification if no region contains a given pair of timing groups.36

6. Conclusion

Difference-in-differences is perhaps the most widely applicable quasi-experimental research design, but it has primar-
ily been understood in the context of the simplest two-group/two-period estimator. I show that when treatment timing
varies across units, the TWFEDD estimator equals a weighted average of all possible simple 2x2 DDs that compare one
group that changes treatment status to another group that does not. Many ways in which the theoretical interpretation of
regression DD differs from the canonical model stem from the fact that these simple components are weighted together
based both on sample sizes and the variance of their treatment dummy. The causal estimand that TWFEDD can identify is
a variance-weighted average treatment effect on the treated (VWATT ). It does so under two assumptions: that a variance-
weighted average of untreated potential outcome changes equals zero (VWCT = 0) and that average treatment effects
for each timing group do not change over time (∆ATT = 0). The assumption of constant treatment effects is necessary
because already-treated units act as the control group in some 2x2 DD terms.

Researchers seeking to exploit variation in treatment timing to estimate causal effects should use TWFEDD with
caution. The TWFEDD estimator only has a meaningful causal interpretation under strong assumptions on treatment
effects and even then it yields a parameter that may differ from what researchers have in mind. If treatment effects
are likely to vary over time one should not use TWFEDD to summarize the estimated effects. If the variance-weighted
average of treatment effects is not of interest one should not use TWFEDD either. My results provide tools to help
applied researchers evaluate both of these issues and judge whether TWFEDD can provide meaningful causal estimates.
Fortunately, alternative estimators have recently been developed that can deliver causal estimates when TWFEDD cannot.
They all carefully construct control groups to address the bias from time-varying treatment effects (Ben-Michael et al.,
2019; Borusyak and Jaravel, 2017; de Chaisemartin and D’Haultfœuille, 2020; Sun and Abraham, 2020) and some allow
control over the target parameter (Callaway and Sant’Anna, 2020) which improves interpretation of the results.

35 Appendix A analyzes the theoretical properties of a single controlled 2x2 DD (β̂2x2|X
kU ) abstracting from the within-group term and differences

n predicted treatment in the subsample versus full sample and additionally assuming that covariates are not affected by the treatment. When
reatment effects are correlated with post-period changes in the covariates, controls absorb part of the treatment effect. This generalizes an existing
oint about unit-specific linear time trends (Lee and Solon, 2011). Any control variable could inappropriately absorb treatment effects. Moreover,
hen correctly and completely specified, controls do successfully partial out differential trends, but since X it varies period-by-period even within
he PRE (k) and POST (k), they also partial out period-by-period covariances between Y 0 and predicted treatment status that do not in themselves
ias β̂2x2

kU . In sum, I find four main ways in which controlling for X it in a regression does not address the bias in DD models. First, it introduces
ithin-group comparisons that could not have biased β̂DD . Second, it extrapolates the full-sample predicted treatment variable onto the pairwise
omponents. Third, it partials out period-by-period covariance between controls and untreated potential outcomes within the pre/post periods that
ould not have biased β̂DD . Lastly it nets out any part of the treatment effect that is correlated with differential covariate paths in the post period.
36 Appendix B also analyzes triple-difference models and shows that they also have a weighted average form. Appendix C briefly discusses treatment
ariables that turn off.
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Fig. 10. Adding controls adjusts between-timing-group comparisons: An example with the 1970 no-fault divorce states compared to non-reform
states. Notes: Panel A plots the treatment dummy and group-year averages of fitted values from the full-sample Frisch–Waugh–Lovell regression
(p̃kt ) for the 1970 states and non-reform states. Panel B plots the difference in adjusted treatment variable,

(
D̃1970,t − p̃1970,t

)
−

(
D̃NRS,t − p̃NRS,t

)
,

etween the two groups and the same difference in female suicide rates. The covariates do not adjust the treatment dummy very much, so the
ontrolled coefficient (−22.4) is almost identical to the uncontrolled 2x2 DD (−22.3). This is the part of the between term in (27) that comes from
he 1970 versus non-reform comparison.
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ppendix A. Proof of the DD decomposition theorem

The proofs involve sample covariances of demeaned variables, and rely on this Lemma:

emma 1. The covariance between a variable zgt and two-way-fixed-effects-adjusted variable x̃kt = (xkt − xk) −

(
xt − x

)
equals a sum over every pair of observations (‘‘dyads’’) of the period-by-period products of differences between groups in zkt
and x̃kt .∑

k

nk
1
T

∑
t

zkt
[
(xkt − xk) −

(
xt − x

)]
=

∑
k

∑
ℓ>k

nℓnk
1
T

∑
t

(zkt − zℓt) [(xkt − xk) − (xℓt − xℓ)] (A.1)

Proof. Assume zkt and xkt are observed in cross-sectional units over time periods, t. The time means
(
xt − x

)
are weighted

averages across units, so:

(xkt − xk) −

(
xt − x

)
= (xkt − xk) −

∑
ℓ

nℓ (xℓt − xℓ) (A.2)

=

∑
ℓ̸=k nℓ  

(1 − nk) (xkt − xk) −

∑
ℓ̸=k

nℓ (xℓt − xℓ) (A.3)

=

∑
ℓ̸=k

nℓ [(xkt − xk) − (xℓt − xℓ)] (A.4)

Substituing into (A.1):
1
T

∑
t

∑
k

∑
ℓ̸=k

nℓnkzkt [(xkt − xk) − (xℓt − xℓ)] (A.5)

=

∑
k

∑
ℓ>k

nℓnk
1
T

∑
t

(zkt − zkt) [(xkt − xk) − (xℓt − xℓ)] (A.6)

where (A.6) follows because every dyad (a, b) appears twice, once with zat [(xat − xa) − (xbt − xb)] and once with
zbt [(xbt − xb) − (xat − xa)]. ■

Proof of Theorem 1. From Eq. (6) and the definition of D̃it :

Ĉ(yit , D̃it )

V̂ (D̃it )
=

1
NT

∑
i
∑

t yit
[(

Dit − Di
)
−

(
Dt − D

)]
V̂D

(A.7)

dd and subtract deviations of timing-group-by-time means from timing group-means (Dk(i)t − Dk(i)) in D̃it . I use k(i) to
enote the group to which unit i belongs:

=

1
NT

∑
i
∑

t yit

⎡⎢⎣
=0  (

Dit − Di
)
−
(
Dk(i)t − Dk(i)

)
+
(
Dk(i)t − Dk(i)

)
−

(
Dt − D

)⎤⎥⎦
V̂D

(A.8)

The first terms in brackets equal zero because D̃it varies only at the timing-group-by-year level so Dit = Dk(i)t . The
covariance between yit and

(
Dk(i)t − Dk(i)

)
−

(
Dt − D

)
then collapses to timing-group-by-year averages. I use k instead of

k(i) hereafter. Apply Lemma 1 to (A.8):∑
k
∑

ℓ>k nℓnk
1
T

∑
t

(
ykt − yℓt

) [(
Dkt − Dk

)
−
(
Dℓt − Dℓ

)]
V̂D

(A.9)

ow consider the possible values of 1
T

∑
t

(
ykt − yℓt

) [(
Dkt − Dk

)
−
(
Dℓt − Dℓ

)]
. When the control group is either never

treated or always treated (ℓ = ∞ or ℓ < 1) we have
(
DUt − DU

)
= 0 and:

−
1
T

∑
(ykt − yUt)Dk +

1
T

∑
(ykt − yUt)

(
1 − Dk

)
(A.10)
t<k t≥k
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i

T
b∑
A

R

A
A

A
A

A

A

A
A
A
A
B
B

=

[(
yPOST (k)kt − yPRE(k)

kt

)
−

(
yPOST (k)
Ut − yPRE(k)

Ut

)]
Dk
(
1 − Dk

)
(A.11)

= β̂2x2
kU Dk

(
1 − Dk

)
(A.12)

hen k < ℓ < T , we have:

−
1
T

∑
t<k

(
ykt − yℓt

) (
Dk − Dℓ

)
+

1
T

∑
t∈[k,ℓ)

(
ykt − yℓt

) (
1 − Dk + Dℓ

)
−

1
T

∑
t≥ℓ

(
ykt − yℓt

) (
Dk − Dℓ

)
(A.13)

= −

(
yPRE(k)
kt − yPRE(k)

ℓt

) (
Dk − Dℓ

) (
1 − Dk

)
+

(
yMID(k,ℓ)
kt − yMID(k,ℓ)

ℓt

) (
Dk − Dℓ

) (
1 − Dk + Dℓ

)
−

(
yPOST (ℓ)

kt − yPOST (ℓ)
ℓt

)
Dℓ

(
Dk − Dℓ

)
(A.14)

=

[(
yMID(k,ℓ)
kt − yPRE(k)

kt

)
−

(
yMID(k,ℓ)
kt − yPRE(k)

ℓt

)] (
Dk − Dℓ

) (
1 − Dk

)
+

[(
yPOST (ℓ)
ℓt − yMID(k,ℓ)

ℓt

)
−

(
yPOST (ℓ)

kt − yMID(k,ℓ)
kt

)]
Dℓ

(
Dk − Dℓ

)
(A.15)

=
(
1 − Dℓ

)2
β̂

2x2,k
kℓ

(
Dk − Dℓ

1 − Dℓ

)(
1 − Dk

1 − Dℓ

)
+ D

2
k β̂

2x2,ℓ
kℓ

(
Dℓ

Dk

)(
Dk − Dℓ

Dk

)
(A.16)

Substituting (A.12) and (A.16) into (A.9) and denoting untreated (or always treated) groups by U , earlier treated groups
n a dyad by k, and later treated groups by ℓ, establishes Eq. (10a):

1

V̂D

⎧⎨⎩∑
k̸=U

(nk + nU )2 nkU (1 − nkU )Dk
(
1 − Dk

)
β̂2x2
kU

+

∑
k̸=U

∑
ℓ>k

[(
(nk + nℓ)

(
1 − Dℓ

))2
nkℓ (1 − nkℓ)

(
Dk − Dℓ

1 − Dℓ

)(
1 − Dk

1 − Dℓ

)
β̂

2x2,k
kℓ

+
(
(nk + nℓ)Dk

)2
nkℓ (1 − nkℓ)

(
Dℓ

Dk

)(
Dk − Dk

Dk

)
β̂

2x2,ℓ
kℓ

]⎫⎬⎭ (A.17)

∑
k̸=U (nk + nU )2 V̂D

kU β̂2x2
kU +

∑
k̸=U

∑
ℓ>k

[(
(nk + nℓ)

(
1 − Dℓ

))2
V̂D,k
kℓ β̂

2x2,k
kℓ +

(
(nk + nℓ)Dk

)2
V̂D,ℓ
kℓ β̂

2x2,ℓ
kℓ

]
V̂D

(A.18)

he denominator, V̂D the variance of D̃it , equals the sum of the terms multiplying the β̂2x2’s in (A.18). This follows
y substituting Dit for yit in each β̂2x2 and noting that every term equals 1. Therefore, the weights sum to one:
k̸=U skU +

∑
k̸=U

∑
ℓ>k

[
skkℓ + sℓkℓ

]
= 1. ■

ppendix B. Supplementary data

Supplementary material related to this article can be found online at https://doi.org/10.1016/j.jeconom.2021.03.014.
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